Grabduck

PostgreSQL vs MySQL

:

В преддверии своего доклада на конференции PGCONF.RUSSIA 2015 я поделюсь некоторыми наблюдениями о важных различиях между СУБД MySQL и PostgreSQL. Этот материал будет полезен всем тем, кого уже не устраивают возможности и особенности MySQL, а также тем, кто делает первые шаги в Postgres. Конечно, не стоит рассматривать этот пост как исчерпывающий список различий, но для принятия решения в пользу той или иной СУБД его будет вполне достаточно.


Тема моего доклада «Асинхронная репликация без цензуры, или почему PostgreSQL завоюет мир», и репликация одна из самых больных тем для нагруженных проектов использующих MySQL. Проблем много — корректность работы, стабильность работы, производительность — и на первый взгляд они выглядят несвязанными. Если же посмотреть в историческом контексте, то мы получаем интересный вывод: MySQL репликация имеет столько проблем потому, что она не была продумана, а точкой невозврата была поддержка storage engine (подключаемых движков) без ответов на вопросы «как быть с журналом?» и «как различным storage engine участвовать в репликации». В 2004 году в PostgreSQL рассылке пользователь пытался «найти» storage engine в исходном коде PostgreSQL и сильно удивился, что их нет. В процессе дискуссии кто-то предложил добавить эту возможность PostgreSQL, и один из разработчиков ответил «Ребята, если мы так сделаем, у нас будут проблемы с репликацией и с транзакциями между движками».
The problem is that many storage management systems… often do their own WAL and PITR. Some do their own buffer management, locking and replication/load management too. So, as you say, its hard say where an interface should be
abstracted.
ссылка на это письмо в postgresql mailing list

Прошло более 10 лет, и что мы видим? В MySQL есть раздражающие проблемы с транзакциями между таблицами разных storage engine и у MySQL проблемы с репликацией. За эти десять лет у PostgreSQL появились подключаемые типы данных и индексы, а также есть репликация — т. е. преимущество MySQL было нивелировано, в то время как архитектурные проблемы MySQL остались и мешают жить. В MySQL 5.7 попытались решить проблему производительности репликации, распараллелив её. Поскольку проект на работе очень чувствителен к производительности репликации в силу своего масштаба, я попытался протестировать, стало ли лучше. Я нашёл, что параллельная репликация в 5.7 работает медленней однопоточной в 5.5, и лишь в отдельных случаях — примерно также. Если вы сейчас используете MySQL 5.5 и хотите перейти на более свежую версию, то учтите, что для высоконагруженных проектов миграция невозможна, поскольку репликация просто перестанет успевать выполняться.

После доклада на highload, в Oracle приняли к сведению разработанный мной тест и сообщили, что попытаются исправить проблему; недавно мне даже написали, что смогли увидеть параллелизм на своих тестах, и выслали настройки. Если не ошибаюсь, при 16 потоках появилось незначительное ускорение по сравнению с однопоточной версией. К сожалению, до сих пор не повторил свои тесты на предоставленных настройках — в частности потому, что с такими результатами наши проблемы всё равно остаются актуальными.

Точные причины такой регрессии производительности неизвестны. Было несколько предположений — например, Кристиан Нельсен, один из разработчиков MariaDB, у себя в блоге писал о том, что могут быть проблемы с перфоманс-схемой, с синхронизацией тредов. Из-за этого наблюдается регрессия в 40%, которая видна на обычных тестах. Oracle-разработчики это опровергают, и меня даже убедили, что её нет, видимо, я вижу какую-то другую проблему (и сколько же их всего?).

В MySQL репликации проблемы со storage engine усугубляются выбранным уровнем репликации — они логические, в то время как в PostgreSQL — физические. В принципе, у логической репликации есть свои преимущества, она позволяет сделать больше всяких интересных штук, об этом в докладе я тоже упомяну. Но PostgreSQL даже в рамках своей физической репликации уже сводит все эти преимущества на нет. Иными словами, почти все, что есть в MySQL, уже можно сделать и в PostgreSQL (либо будет можно в ближайшем будущем).

На реализацию низкоуровневой физической репликации в MySQL можно не надеяться. Проблема в том, что там вместо одного журнала (как в PostgreSQL) их получается два или четыре — смотря как посчитать. PostgreSQL просто коммитит запросы, они попадают в журнал, и этот журнал используется в репликации. PostgreSQL-репликация суперстабильна, потому что она использует тот же журнал, что и при операциях восстановления после сбоев. Этот механизм давно написан, хорошо оттестирован и оптимизирован.

В MySQL ситуация другая. У нас есть отдельный журнал InnoDB и журнал репликации, и нужно коммитить и туда, и туда. А это two-phase commit между журналами, который по определению работает медленно. То есть мы не можем просто взять и сказать, что мы повторяем транзакцию из InnoDB-журнала — приходится разбираться, что за запрос, запускать его заново. Если даже это логическая репликация, на уровне строчек, то эти строчки нужно искать в индексе. И мало того, что приходится сделать большое количество работы, чтобы выполнить запрос — он при этом снова будет писаться в свой InnoDB-журнал уже на реплике, что для производительности явно нехорошо.

В PostgreSQL в этом смысле архитектура на порядок продуманней и лучше реализована. Недавно в нём анонсировали возможность под названием Logical Decoding — которая позволяет сделать всякие интересные штуки, которые очень тяжело сделать в рамках физического журнала. В PostgreSQL это надстройка сверху, logical decoding позволяет работать с физическим журналом так, будто он логический. Именно эта функциональность скоро уберёт все преимущества MySQL репликации, кроме, возможно, размера журнала — statement-based репликация MySQL будет выигрывать — но у statement-based репликации MySQL есть совершенно дикие проблемы в самых неожиданных местах, и не стоит считать её хорошим решением (про это всё я тоже буду говорить в докладе).

Кроме того, для PostgreSQL есть триггерная репликация — это Tungsten, который позволяет делать то же самое. Триггерная репликация работает следующим образом: ставятся триггеры, они заполняют таблицы или пишут файлы, результат отправляется на реплику и там применяется. Именно через Tungsten, насколько я знаю, делают миграцию из MySQL в PostgreSQL и наоборот. В MySQL же логическая репликация работает прямо на уровне движка, и другой ее сделать сейчас уже нельзя.


У PostgreSQL документация гораздо лучше. В MySQL она формально вроде даже есть, но смысл отдельных опций понять бывает тяжело. Вроде написано, что они делают, но чтобы понять, как их правильно настраивать, нужно использовать неофициальную документацию, искать статьи на эти тему. Часто нужно понимать архитектуру MySQL, без этого понимания настройки выглядят какой-то магией.

Например, так «выстрелила» компания Percona: они вели MySQL Performance Blog, и в этом блоге было множество статей, в которых рассматривались отдельные моменты эксплуатации MySQL. Это принесло бешеную популярность, привело клиентов в консалтинг, позволило привлечь ресурсы для запуска разработки собственного форка Percona-Server. Существование и востребованность MySQL Performance Blog доказывают, что официальной документации просто недостаточно.

У PostgreSQL фактически все ответы есть в документации. С другой стороны, я слышал много критики при сравнении документации PostgreSQL со «взрослой» Oracle. Но это, на самом деле, очень важный показатель. MySQL с взрослым Oracle никто не пытается сравнивать вообще — это было бы смешно и нелепо — а PostgreSQL уже начинают сравнивать вполне серьезно, PostgreSQL-коммьюнити эту критику слышит и работает над улучшением продукта. Это говорит о том, что он по своим возможностям и производительности начинает конкурировать со столь мощной системой как Oracle, на которой работают мобильные операторы и банки, в то время как MySQL остаётся сидеть в нише веб-сайтов. И проекты-гиганты, доросшие до большого количества данных и пользователей, хлебают горе с MySQL большой ложкой, постоянно упираясь в его ограничения и архитектурные проблемы, которые невозможно исправить, затратив разумное количество сил и времени.

Примером таких крупных проектов на PostgreSQL является 1C: PostgreSQL идёт как опция вместо Microsoft SQL, а Microsoft SQL действительно фантастическая СУБД, одна из самых мощных. PostgreSQL может заместить MS SQL, а попытка заместить его MySQL… давайте опустим завесу жалости над этой сценой, как писал Марк Твен.


PostgreSQL соответствует стандартам SQL-92, SQL-98, SQL-2003 (реализованы все его разумные части) и уже работает над SQL-2011. Это очень круто. Для сравнения, MySQL не поддерживает даже SQL-92. Кто-то скажет, что в MySQL такая цель просто не ставилась разработчиками. Но нужно понимать, что разница между версиями стандарта заключается не в мелких изменениях — это новые функциональные возможности. То есть в тот момент, когда MySQL говорил: «Мы не будем следовать стандарту», они не просто вносили какие-то мелкие различия, из-за которых MySQL тяжело поддержать, они еще закрывали дорогу к реализации многих нужных и важных возможностей. Там до сих пор нет нормально оптимизатора. То, что там называется оптимизацией, в PostgreSQL называется «парсер» плюс нормализации. В MySQL это лишь план выполнения запросов, без разделения. И MySQL к поддержке стандартов придут еще очень нескоро, поскольку на них давит груз обратной совместимости. Да, они хотят, но лет через пять, может, что-нибудь у них появится. В PostgreSQL есть уже все и сейчас.
С точки зрения простоты администрирования сравнение не в пользу PostgreSQL. MySQL администрировать гораздо проще. И не потому, что в этом смысле он лучше продуман, а просто гораздо меньше умеет делать. Соответственно, и настраивать его проще.

У MySQL есть проблема со сложными запросами. Например, MySQL не умеет спускать группировку в отдельные части union all. Разница между двумя запросами — на нашем примере группировка по отдельным таблицам и union all сверху работала в 15 раз быстрее, чем union all и потом группировка, хотя оптимизатор должен оба запроса приводить в одинаковый, эффективный план выполнения запроса. Нам придется делать генерацию таких запросов руками — т. е. тратить время разработчиков на то, что должна делать база.

«Простота» MySQL вытекает, как можно увидеть выше, из крайне бедных возможностей — MySQL работает просто хуже и требует больше времени и усилий во время разработки. В противоположность этому, у PostrgreSQL есть гистограммы и нормальный оптимизатор, и он выполнит такие запросы эффективно. Но если есть гистограммы, значит, есть их настройки — как минимум bucket size. Про настройки нужно знать и в отдельных случаях их менять — следовательно, нужно понимать, что это за настройка, за что она отвечает, уметь распознавать такие ситуации, увидеть выбрать оптимальные параметры.

Изредка случается, что умелость PostrgreSQL может помешать, а не помочь. В 95% случаев все хорошо работает — лучше, чем MySQL, — а какой-то один дурацкий запрос работает гораздо медленнее. Или всё работает хорошо, а потом внезапно (с точки зрения пользователя) по мере роста проекта некоторые запросы стали работать плохо (стало больше данных, стал выбираться другой план выполнения запроса). Скорее всего, для исправления достаточно запустить analyze или немножко покрутить настройки. Но нужно знать, что делать и как это делать. Как минимум, нужно прочитать документацию PostgreSQL на эту тему, а читать документацию почему-то не любят. Может потому, что в MySQL от неё мало помощи? :)

Подчеркну, что PostgreSQL в этом смысле не хуже, просто он позволяет отложить проблемы, а MySQL сразу их вываливает и приходится тратить время и деньги на их решение. В этом смысле MySQL работает всегда стабильно плохо, и еще на этапе разработки люди эти особенности учитывают: делают все максимально простым способом. Это относится только к производительности, точнее, к способам её достижения и к её прогнозируемости. В плане корректности и удобства PostgreSQL на голову выше MySQL.


Чтобы определиться с выбором между MySQL и PostgreSQL для конкретного проекта, прежде всего нужно ответить на другие вопросы.

Во-первых, какой опыт есть у команды? Если вся команда имеет 10 лет опыта работы с MySQL и нужно запуститься как можно быстрее, то не факт, что стоит менять знакомый инструмент на незнакомый. Но если сроки не критичны, то стоит попробовать PostgreSQL.

Во-вторых, нужно не забывать про проблемы эксплуатации. Если у вас не высоконагруженный проект, то с точки зрения производительности разницы между этими двумя СУБД нет. Зато у PostgreSQL есть другое важное преимущество: он более строгий, делает больше проверок за вас, дает меньше возможности ошибиться, и это в перспективе огромное преимущество. Например, в MySQL приходится писать собственные инструменты для верификации обычной ссылочной целостности базы. И даже с этим могут быть проблемы. В этом смысле PostgreSQL инструмент более мощный, более гибкий, разрабатывать на нем приятнее. Но это во многом зависит от опыта разработчика.

Подводя итог: если у вас простенький интернет-магазин, нет денег на админа, нет серьезных амбиций перерасти в большой проект и есть опыт работы с MySQL — то берите MySQL. Если предполагаете, что проект будет популярным, если он большой, его будет тяжело переписать, если в нём сложная логика и связи между таблицами — возьмите PostgreSQL. Даже из коробки он у вас будет работать, поможет в разработке, сэкономит время, и вам проще будет расти.