Взгляд изнутри: Вскрытие чипа Nvidia 8600M GT

:

image
Предисловие

Года 3-4 назад судьба распорядилась так, что в руки мне попал ноутбук Asus G2S. Счастье моё длилось ровно до прошлой зимы, когда ни с того, ни с сего на экране стали появляться артефакты, особенно при запуске игрушек или «мощных» приложений, активно работающих с видеочипом. В результате оказалось, что проблема именно в нём. Nvidia для практически всей геймерской линейки G2 поставляла видеочипы с браком (отслоение контактов между самим кристаллом и подложкой), который обнаруживался лишь через пару лет интенсивной работы. Решение было однозначным – замена видеочипа. Но что делать со старым?! Ответ на этот вопрос пришёл на редкость быстро…
Много трафика под катом
Дело в том, что в качестве «хобби» я читаю лекции в СУНЦ МГУ (школа Колмогорова), и меня давно просили подготовить материал по микро и наноэлектронике, где бы объяснялось как, где и в каких условиях производят флешки, процессоры и т.д. А тут такой ценный образец пропадает, так что буквально через день старенький видеочип лежал под алмазным кругом микротома.

image
Наш старенький, но добротный Accutom-2. В корпорации добра даже нормальной фотографии этого девайса не нашлось.

Наверное, поступил глупо, что не снял видео процесса разрезания самого чипа, но что поделать – c’est la vie. Когда в руках у меня оказалось 3 части, то разочарованию не было предела. Оказалось, что срез был довольно грубым (хотя я рассчитывал, что микротом сможет разрезать ровно и оставить после себя гладкую поверхность), и пришлось ещё долго и упорно шлифовать и полировать торцевую поверхность чипа, которую я затем рассмотрел под электронным микроскопом.

О пользе полировки

Кстати, польза от полировки видна невооружённым взглядом, точнее вооружённым, но только оптическим микроскопом:

image
Слева фотографии до полировки, справа – после. Верхний ряд фотографий – увеличение 50x, нижний – 100x.

После полировки (фотографии справа) уже на увеличении 50x видны медные контакты, соединяющие отдельные структуры чипа. До полировки, они, конечно же, тоже проглядывают сквозь пыль и крошку, образовавшуюся после резки, но разглядеть отдельные контакты вряд ли удастся.

Электронная микроскопия

Оптика даёт 100-200 крат увеличения, однако это не идёт ни в какое сравнение с 100 000 или даже 1 000 000 крат увеличения, которое может выдать электронный микроскоп (теоретически для ПЭМ разрешение составляет десятые и даже сотые доли ангстрема, однако в силу некоторых реалий жизни такое разрешение не достигается). К тому же, чип изготовлен по техпроцессу 90 нм, и увидеть с помощью оптики отдельные элементы интегральной схемы довольно проблематично. А вот электроны вкупе с определёнными типами детектирования ( SE2 – вторичные электроны) позволяют визуализировать разницу в химическом составе материала и, таким образом, заглянуть в самое кремниевое сердце нашего пациента, а именно узреть сток/исток, но об этом чуть ниже.
Печатная плата

Итак, приступим. Первое, что мы видим – печатная плата, на которой смонтирован сам кремниевый кристалл. К материнской плате ноутбука он крепится с помощью BGA пайки. В ходе разработки лекции для школьников я пользовался довольно подробными публикациями от компании Intel на Хабре, однако недавно нашёл пару видео фрагментов с канала Discovery о кремниевой электронике. Например, в этом видеофрагменте рассказано о том, как кремниевый чип устанавливается на подложку, а также как эти маленькие (~0,5 мм в диаметре) оловянные шарики упорядоченно размещаются на печатной плате. Китайцы с их трудолюбием и усердием тут совершенно ни при чём:

image
BGA пайка.

image
BGA пайка.

Сам же кристалл устанавливается на некое подобие BGA, давайте назовём его «mini»-BGA. Это те же шарики из олова, которые соединяют маленький кусочек кремния с большой многослойной печатной платой, только их размер гораздо меньше.

image
Сравнение BGA и mini-BGA пайки.

image
Сравнение BGA и mini-BGA пайки.

Кстати, между кристаллом и печатной платой находится очень много «шариков», которые, по всей видимости, являются своего рода заполнителем пустого пространства между этими элементами и, возможно, способствуют отводу тепла от самого чипа к PCB.

image
Множество шарообразных частиц заполняют пространство между чипом и печатной платой. А вы видите уже проглядывающие контакты на самом видеочипе?!

Далее будет немножко фотографий самой печатной платы. Она оказалось 8-ми слойной, причём все слои так или иначе соединены между собой. И ещё – материал платы «волнистый», это заметно, как на оптических фотографиях, так и на изображениях, полученных с помощью электронного микроскопа. Кто знает, почему?!

image

image

image

Элемент обвязки

Микротом позволил аккуратно разрезать один из элементов обвязки, который, судя по всему, является либо SMD резистором, либо конденсатором. Но, честно говоря, я ожидал увидеть всё что угодно, только не полосатую структуру (т.е. данный элемент собран послойно из нескольких материалов, о чём свидетельствует разность контраста), поэтому если есть знающие люди, то Ваши комментарии очень помогут разобраться.

image
Оптическая фотография элемента обвязки видеочипа.

image
Оптическая фотография элемента обвязки видеочипа.

image
Оптическая фотография элемента обвязки видеочипа.

image
СЭМ-фотография элемента обвязки видеочипа.

image
СЭМ-фотография элемента обвязки видеочипа.

Кристалл NVidia 8600GT собственной персоной

Итак, вроде все элементы чипа NVidia 8600 GT мы увидели, кроме самого главного – устройства самого камня, а точнее очень тонкого слоя на нём. О том, как кварцевый песок превращается в высокочистый монокристаллический кремний можно узнать из блога компании Intel или из следующего видео, опять-таки от канала Discovery:

Чтобы гонять электроны по своим медным и полупроводниковым контактам пластины из кремния прошли множество стадий обработки, а я взял и всё испортил, препарировал бедный чип. Но не буду долго томить… Вот, ради чего я так долго мучился, и что хотел увидеть – отдельные элементы, выполненные по техпроцессу 90 нм:

image
Отдельные элементы современной компьютерной техники.

Еле заметная разница в контрасте – это и есть те самые стоки/истоки, которые помогают нам с Вами работать за компьютером, играть в компьютерные игры, смотреть фильмы, слушать музыку и т.д. Размер структур составляет, по моим подсчётам, около 114 нм, учитывая ~10% в шкале и расчётах, а также особенности литографии, эта цифра очень хорошо согласуется с заявленным техпроцессом.
Далее будет ещё несколько фотографий видеочипа:

image

image

image

image

image

Заключение

Многое из увиденного внутри видеочипа меня поразило. Элемент обвязки – вообще, полосатый шедевр. И этим я с удовольствием поделился со школьниками на открытии олимпиады по нанотехнологиям, очный тур которой проводился в Москве в апреле месяце. На открытии мне довелось прочитать подготовленную лекцию.
Конечно, публикации от Intel, фото, найденные в Интернете с помощью корпорации добра, красивые картинки и анимация – отличная вещь, позволяющая быстро получить требуемую информацию и знание. Однако когда лично ты разрезаешь чип, изучаешь его, не отрываясь от экрана монитора часами, и видишь, что техпроцесс действительно 90 нм, что кто-то смог создать, просчитать всю эту конструкцию до мельчайших деталей, то в этот момент чувствуешь радость и гордость за человечество, которое создало такой совершенный продукт. Это просто WOW!

P.S. Если данный материал будет уважаемым хабралюдям интересен, то можно продолжить. Уже в полуготовом виде на сегодняшний день в коробочке аккуратно лежат мёртвая и препарированная флешка, HDD, кусочек CD диска и резистивный дисплей китаефона.
P.P.S. Пока я выкраивал время на подготовку материала на Хабре появилась аналогичная статья о Pentium III, так что будем считать это продолжением.



Во-первых, полный список опубликованных статей на Хабре:

Вскрытие чипа Nvidia 8600M GT, более обстоятельная статья дана тут: Современные чипы – взгляд изнутри
Взгляд изнутри: CD и HDD
Взгляд изнутри: светодиодные лампочки
Взгляд изнутри: Светодиодная промышленность в России
Взгляд изнутри: Flash-память и RAM
Взгляд изнутри: мир вокруг нас
Взгляд изнутри: LCD и E-Ink дисплеи
Взгляд изнутри: матрицы цифровых камер
Взгляд изнутри: Plastic Logic
Взгляд изнутри: RFID и другие метки
Взгляд изнутри: аспирантура в EPFL. Часть 1
Взгляд изнутри: аспирантура в EPFL. Часть 2
Взгляд изнутри: мир вокруг нас — 2
Взгляд изнутри: мир вокруг нас — 3
Взгляд изнутри: мир вокруг нас — 4
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 1
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 2
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 3
Взгляд изнутри: IKEA LED наносит ответный удар
Взгляд изнутри: а так ли хороши Fillament-лампы?

и 3DNews:
Микровзгляд: сравнение дисплеев современных смартфонов

Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, YouTube, а также Dirty.

В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»

Yandex.Money 41001234893231
WebMoney (R296920395341 или Z333281944680)